American Electric Power Summer 2004 Preparedness

Presentation to the Indiana Utility Regulatory Commission

April 22, 2004

AEP Presenters

John Sampson

Indiana State President

Dave Lahrman

Manager - Region Support

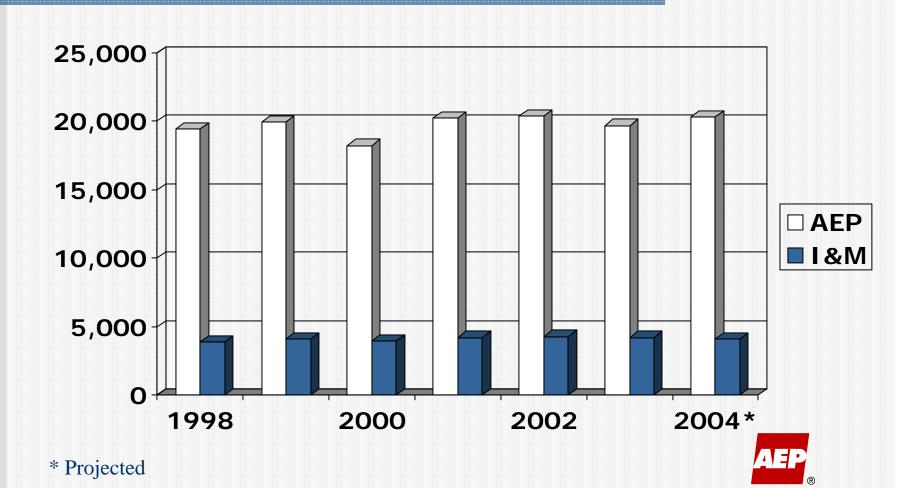
Peak Demand – 2003

	Date	Hour Ending	Peak Demand MW
AEP System East	Aug. 21	1600	19,688
I&M	Aug. 21	1500	4,223

Summer 2004 Peak AEP – East System

Summer 2004 - Projected MV	N
----------------------------	---

	June	July	August
Peak Internal Demand	19,363	20,307	19,865
Buckeye Power Load	1,334	1,375	1,375
Committed Off-system Sales	1,160	1,179	1,178
Total Demand	21,857	22,861	22,418



Summer 2004 Peak Indiana Michigan Power Company

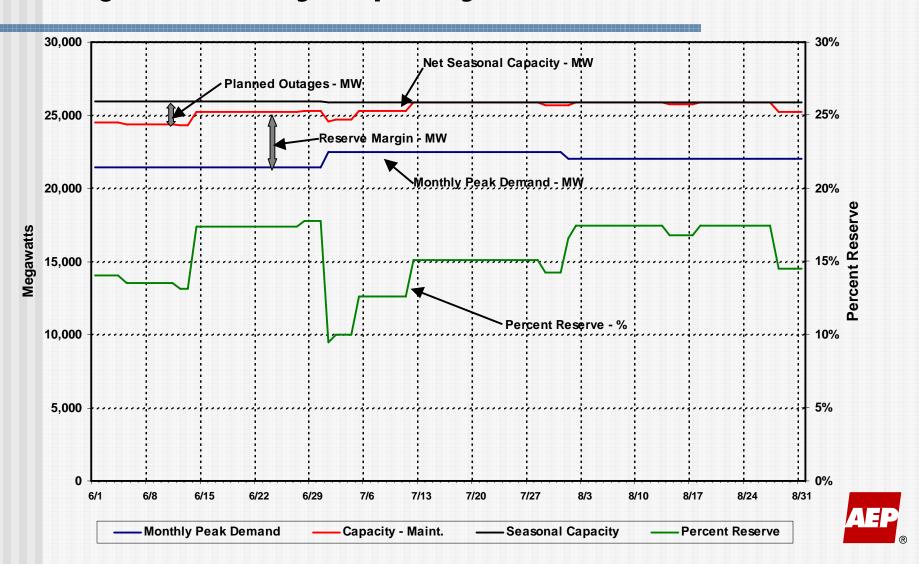
Summer 2004 – Projected MW				
	June	July	August	
Peak Internal Demand	4,257	4,115	4,055	
Committed Off-System Sales	261	265	263	
Total Demand	4,518	4,380	4,318	

AEP-East/I&M Summer Peaks

AEP-East Resources To Meet Summer Peak

	June	July	August
Installed Capability	24,532	24,457	24,457
Purchases	1,442	1,413	1,414
Total Capability	25,974	25,870	25,871

AEP-East Resources Reserve Margins


Interruptible Demand = 388 MW

	June	July	August
Total Capability	25,974	25,870	25,871
Total System Demand	21,469	22,473	22,030
Reserve Margins Before Interruptibles (%)	4,117 18.8	3,009 13.2	3,453 15.4
Reserve Margins After Interruptibles (%)	4,505 21.0	3,397 15.1	3,841 17.4

All numbers are MW except where indicated.

AEP-East System (Summer 2004) Projected Daily Capacity, Demand and Reserve

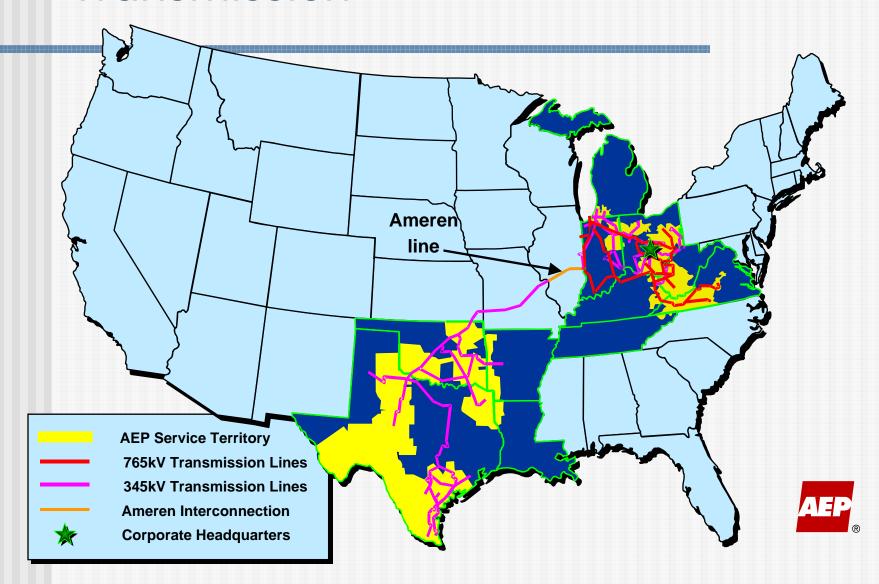
AEP-East Purchase Power Agreements

	June	July	August
OVEC	963	951	951
Summersville	20	15	16
Mone	459	447	447
Total	1,442	1,413	1,414

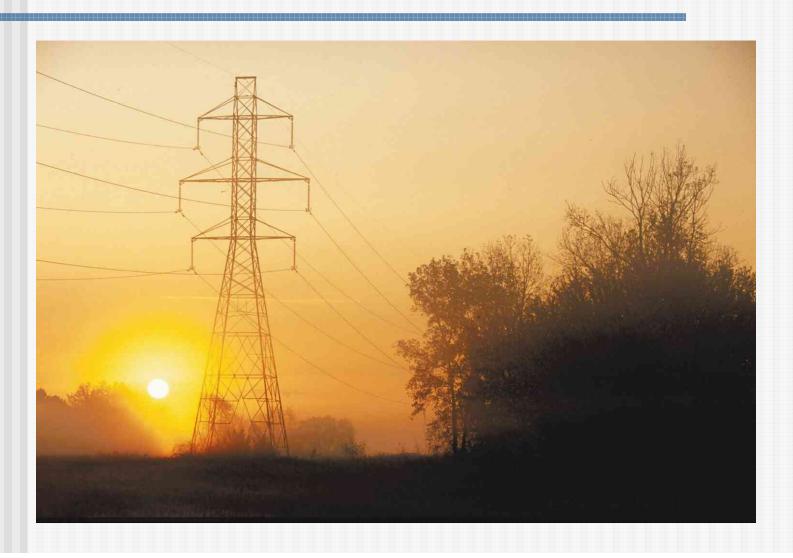
Other purchases as needed. Could include Indiana merchant plants, but amounts/types not known at this time.

Reducing Peak Demand

- Time-of-Day Rates
 - > 2,600 Indiana customers
 - ➤ 16,500 Off-peak water heating systems
 - Off-peak demand forgiveness for large commercial, industrial customers
- Load Management Services
 - ➤ Contract Service Interruptible Power tariff
 - ➤ Emergency Curtailable Service Service
 - ➤ Price Curtailable Service



NOx Compliance Rules


Transmission

Transmission System Improvements

- System improvements continue this year
 - ➤ South Canton (OH) station -- Replace single-phase transformer units over next two years.
 - ➤ Construction of 90 mile, 765-kV circuit in WV and VA
 - ➤ Outages have minimal impact on Indiana customers
- Interconnections on AEP-East System
 - ≥ 25,000-kW of AEP generation
 - ➤ 8,000-mw merchant generation (2,000-mw in Indiana)
 - ➤ 6,000-mw of additional merchant generation to be connected over next several years (none planned for Indiana)

Other Improvements

Reliability Enhancement Programs

Asset Management Approach
Pole Inspection & Treatment
Recloser Maintenance
Small Wire
Underground/Pad mount
Circuit Inspection
Animal Mitigation
Lightning Mitigation
Network Maintenance

AEP/Indiana

Asset Management Approach

- Review system performance
 - > SAIFI
 - > CAIDI
 - Maintenance issues
 - > Facility loading
- Formulate a plan
 - > Targets are set for Asset Maintenance programs
 - Operating issues are identified and mitigation plans formulated
 - ✓ Overloads
 - ✓ Areas with deteriorated facilities
 - ✓ Reliability problems

Pole Inspection, Treatment & Reinforcement Program

- 10 Year Cycle Program
- Contractor performs inspection & treatment; reports unsafe conditions, defective facilities etc
- Pole condition determined; pole is then treated, treated and reinforced or replaced
- Plan to inspect approximately 30,000 poles
- From the inspections, we anticipate that approximately 440 poles will be reinforced and 315 poles replaced

Recloser Maintenance Program

- 6 / 8 Year Cycle Program based on hydraulic vs. vacuum interruption
- Phasing in vacuum units as replacements for aging hydraulic units
- Single phase vs. three phase units where appropriate to improve reliability
- We plan to maintain approximately 100 units which completes the cycle
- We inspect all reclosers and capacitors annually

Small Wire Program

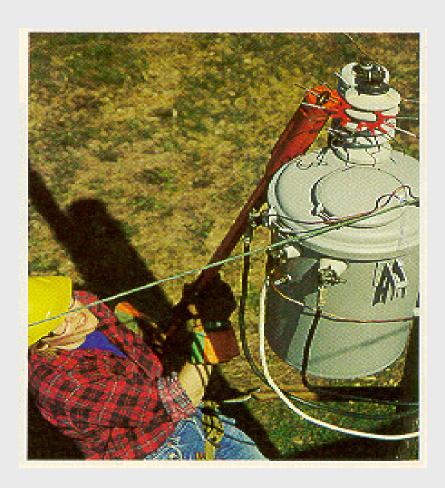
- Overhead and Underground
- Target Reliability Areas
- OH #2 and smaller
 - Deterioration
 - > Excessive splices
 - Secondary included
- UG Mainly URD Focused
 - Cable Rejuvenation Program using a contractor and a proprietary fluid
 - Cable Replacement is completed for non treatable cable
 - ➤ We plan to inject approximately 50,000 feet of cable

Underground Inspection Program

- 5 Year Cycle Program
- External visual inspection
- Target unsafe conditions and access issues
- Follow up correction of unsatisfactory conditions
- We plan to inspect approximately 8,800 URD padmounts, pedestals and risers



Overhead Circuit Inspection Program


- 5 Year Cycle Program
- Inspections are to identify and correct deficiencies.
 - Unsafe conditions
 - Vegetation related concerns
 - ➤ Blown lightning arresters
 - ➤ Broken crossarms/insulators
 - > Broken ground wire
 - Excessively leaning poles
 - Slack down guys
 - > Equipment oil leaks
 - Excessive conductor splices
- We plan to inspect approximately 2,900 miles

Animal Mitigation Program

- Proactive installations on all new equipment and during outage restoration efforts
- Electrostatic guards are installed following animal caused outages and also proactively
- Newer equipment comes with animal protection
- Includes animal deterrence for URD risers
- We plan to install 2,100 guards on targeted circuits

Lightning Mitigation Program

- New lightning arrester installations target circuits with high number of lightning outages
- Four L/A installations per mile as design criteria
- Heavy-duty L/A now AEP standard
- Installing/checking for good grounds is critical
- We plan to install approximately 1,600 arresters on targeted circuits

Network Maintenance Program

- Inspections of urban underground network
 - Network Protector
 - > Transformer
 - > Vaults
 - Manholes
- Trip checks
- Maintenance
 - Network Protector
 - > Transformer
 - Correct inspection deficiencies

AEP's Vegetation Program

Performance Based vs. Cycle Annual Work Plan Unscheduled Work New Construction Storm Restoration

Vegetation Management

Performance-Based versus Cycle-Based

Cycle-Based

Requires circuits to be maintained on a time continuum without regard to actual performance/reliability.

· Performance-Based

- A more efficient and flexible process allowing the Company to address circuits based on a combination of time elapsed since a circuit's last maintenance and reliability issues.
- Allocates resources to circuits or circuit segments as tree conditions and circuit performance warrant.

Vegetation Management

Annual Vegetation Work Plan

- Prioritization of Circuits
 - > Time elapsed
 - Vegetative conditions (Potential tree related outages)
 - > Tree related reliability performance
 - Criticality (e.g. hospitals, public services, etc.)
 - Customer complaints
- Removing/pruning trees off of ROW
 - > AEP tries to balance customers' desires with the need for more extensive pruning and/or removal to provide longer periods of sustainable ROW clearance
- Herbicide applications
- Reclaiming overgrown ROWs
- Removing overhang on trees when limb structure is not sufficient to support load in adverse conditions

Vegetation Management

Beyond Annual Vegetation Work Plan

- Unscheduled Work
 - ➤ Includes reactive work that addresses local concerns and ongoing customer or community complaints
- New Construction
 - Clear ROW for new service and system improvement projects
- Storm Restoration
 - ➤ In response to tornadoes, straight line winds, ice, thunder storms, etc.

Questions?

